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Saccades exhibit variation in performance from one trial to the next, even when paced at

a constant rate by targets at two fixed locations. We previously showed that amplitude

fluctuations in consecutive predictive saccades have fractal structure: the spectrum of the

sequence of consecutive amplitudes has a power-law (f−α) form, indicative of inter-trial

correlations that reflect the storage of prior performance information to guide the planning

of subsequent movements. More gradual decay of these inter-trial correlations coincides

with a larger magnitude of spectral slope α, and indicates stronger information storage

over longer times. We have previously demonstrated that larger decay exponents (α)

are associated with faster adaptation in a saccadic double-step task. Here, we extend

this line of investigation to predictive saccade endpoints (i.e., movement errors). Subjects

made predictive, paced saccades between two fixed targets along a horizontal or vertical

axis. Endpoint fluctuations both along (on-axis) and orthogonal to (off-axis) the direction

of target motion were examined for correlations and fractal structure. Endpoints in the

direction of target motion had little or no correlation or power-law scaling, suggesting

that successive movements were uncorrelated (white noise). In the orthogonal direction,

however, the sequence of endpoints did exhibit inter-trial correlations and scaling. In

contrast, in our previous work the scaling of saccade amplitudes is strong along the

target direction. This may reflect the fact that while saccade amplitudes are neurally

programmed, endpoints are not directly controlled but instead serve as a source of

error feedback. Hence, the lack of correlations in on-axis endpoint errors suggests

that maximum information has been extracted from previous movement errors to plan

subsequent movement amplitudes. In contrast, correlations in the off-axis component

indicate that useful information still remains in this error (residual) sequence, suggesting

that saccades are less tightly controlled along the orthogonal direction.

Keywords: motor control, fractal scaling, oculomotor

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org/Human_Neuroscience/editorialboard
http://www.frontiersin.org/Human_Neuroscience/editorialboard
http://www.frontiersin.org/Human_Neuroscience/editorialboard
http://www.frontiersin.org/Human_Neuroscience/editorialboard
https://doi.org/10.3389/fnhum.2017.00100
http://crossmark.crossref.org/dialog/?doi=10.3389/fnhum.2017.00100&domain=pdf&date_stamp=2017-03-07
http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive
https://creativecommons.org/licenses/by/4.0/
mailto:mshelhamer@jhu.edu
https://doi.org/10.3389/fnhum.2017.00100
http://journal.frontiersin.org/article/10.3389/fnhum.2017.00100/abstract
http://loop.frontiersin.org/people/306154/overview
http://loop.frontiersin.org/people/41688/overview
http://loop.frontiersin.org/people/19453/overview


Federighi et al. Correlations in Predictive-Saccade Endpoints

INTRODUCTION

The saccadic system generates rapid eye movements that shift the
fovea from one place to another in the visual scene (Leigh and
Zee, 2006; Ramat et al., 2007). To ensure visual acuity, saccades
must be fast and accurate (Becker, 1989; Kowler and Blaser,
1995). In most cases, saccades can be viewed as ballistic. In other
words, once planned, a given saccade will be completed according
to the programmed direction and amplitude, regardless of
any intervening changes in the stimulus. Saccade accuracy is
established by an efferent copy of the ongoing motor command
(Robinson, 1975; Wolpert et al., 1995; Optican, 2005). This
efferent copy is used to predict the sensory effects of the
movement (Quaia et al., 2000), which are compared to the actual
movement outcome. Information about movement errors is then
stored and processed to adjust future saccade plans as needed to
maintain accuracy.

The errors in saccadic eye movements have variable and
systematic components (Aitsebaomo and Bedell, 1992; White
et al., 1994). The systematic error reflects a consistent bias in
the endpoints along the direction of target motion, generally
resulting in hypometria (Kapoula and Robinson, 1986; Deubel,
1987; Collewijn et al., 1988a,b). The variable error represents
inter-trial variability in the final saccade position and causes
dispersion of end positions in space. This variable error reflects
the inability to consecutively produce exactly identical saccades,
and has been regarded in models as arising from signal-
dependent noise inmotor commands (Harris andWolpert, 1998)
and uncertainty in target localization (van Beers, 2007). Previous
studies have found that the components of the systematic and
variable errors along the direction of target motion (on-axis) and
in the orthogonal direction (off-axis) have different magnitudes
and may be unrelated (van Opstal and van Gisbergen, 1989;
Barton and Sparks, 2001; Metzger et al., 2004). It has been
proposed that these differences reflect an accumulation of
random uncorrected noise across trials in directions that are
not task relevant (van Beers et al., 2013), or alternatively an
intentional effort to constrain variability to dimensions that do
not impact overall success (Cohen and Sternad, 2009).

Of particular interest to the study of movement variability
and planning of future movements is the generation of predictive
saccades. Predictive saccades are movements made to expected
locations of the visual target, and are encouraged by asking
subjects to saccade between rapidly paced (∼0.7 to 1.0Hz)
alternating visual stimuli. They are generated in anticipation
of each target onset and are characterized by short latencies
(on the order of −150–50ms, too short for visual information
about the upcoming target to be processed) (Shelhamer and
Joiner, 2003). These short latencies imply that such movements
are produced almost entirely based on previous performance
errors (Shelhamer, 2005). Thus, the correlation structure of
long sequences of predictive saccades reflects the storage and
processing of previously observed errors that are used to
plan future movements. We have previously found inter-trial
correlations between the latencies (Shelhamer and Joiner, 2003)
and amplitudes (Wong and Shelhamer, 2011) of consecutive
predictive saccades, such that the series of consecutive latencies

or amplitudes exhibits long memory across large numbers of
saccades. The amplitudes of predictive saccades also exhibit
evidence of trial-by-trial corrections in a direction-specific
(right/left) manner (Wong and Shelhamer, 2011), suggesting that
predictive-saccade amplitudes may be tightly regulated using
performance information extracted from previous movements.
Such strong inter-trial correlations, however, suggest that a large
amount of information has to be stored about each trial, raising
questions of biological feasibility and storage capacity.

One way for the brain to address the information-storage issue
is to retain only error information that is task-relevant, such
as errors that only lie along the primary direction of motion.
Hence, the aim of this study was to explore the nature of error
information that is used to maintain saccade accuracy in the
on-axis and off-axis directions. By examining endpoint errors
produced at the conclusion of the primary saccade (before any
corrective saccades occur), we gain insight into differences in
error processing along directions in which movement errors are
highly task-relevant (on-axis) and less relevant (off-axis). This
study provides insight into how the brain allocates computational
resources for motor programming, and in particular how storage
and processing of task-relevant information might be optimized.

METHODS

Subjects
Nine healthy subjects (two males, seven females, age range 23–
53 years) were tested. All subjects had no reported neurological
or oculomotor problems. All participants gave written informed
consent, as approved by the Western Institutional Review Board
under contract with Johns Hopkins Medical Institutions. Seven
subjects performed all four experimental tasks; two subjects were
tested in the H condition only, as part of a previous study. Three
subjects were not naïve to the purposes of the study.

Eye Movement Recording Apparatus
Eye movements were recorded with a scleral search coil (Skalar
Medical BV, Delft, The Netherlands), while data was acquired
on a PC-compatible computer running custom real-time
experiment-control software, developed in-house. Horizontal
and vertical positions of the left or right eye were recorded,
sampled at 1,000Hz and encoded in binary digital form with
12-bit resolution, corresponding to a system resolution of
approximately 0.03◦ (Robinson, 1963).

Typically the recorded eye was chosen for the comfort and
convenience of the subject, if he or she expressed a preference.
The left eye was chosen by most subjects. Ocular dominance
was not measured or controlled for. Given the highly conjugate
nature of normal targeting saccades (otherwise there would
be post-saccadic diplopia), it is unlikely that our findings are
different between the two eyes. Furthermore, both eyes were
viewing at all times, even though only the movements of one eye
were recorded.

The visual stimulus for prompting eye movements was
produced with a laser reflected via computer-controlled mirror
onto a rear-projection screen, 100 cm from the subject’s eyes. Two
different visual targets were used: a red dot (diameter 0.1◦) and
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a vertical line (thickness 0.1◦, extent 5.4◦). In order to minimize
perturbations due to headmovements, subjects sat in a stationary
chair with their heads restrained by a bite bar. Sessions were
conducted in darkness.

Experiment Design
We investigated the error corrections and processing used
to maintain saccade accuracy during predictive saccades. We
focused on endpoint errors to test for long-term correlations in
time series consisting of sequences of errors made during all
trials of each task. We therefore tested predictive saccades to
horizontal, vertical, and oblique targets located eccentrically in
fixed positions. Horizontal predictive saccades toward targets in
the form of a vertical line were also investigated.

In task H (horizontal predictive saccades to point targets),
the visual target jumped between two positions in the horizontal
plane located at±5◦ with respect to the vertical meridian.

In task V (vertical predictive saccades to point targets), the
visual target jumped between two positions in the vertical plane
located at±5◦ with respect to the horizontal meridian.

In task O (oblique predictive saccades to point targets), the
visual target jumped between two positions, 10◦ apart, in an
oblique direction oriented +45◦ or −45◦ with respect to the
orthogonal plane (randomly chosen for each participant). The
targets were located symmetrically with respect to the center of
the orthogonal plane.

Task H consisted of a sequence of 500 trials, whereas tasks V
and O consisted of a sequence of 500 or 400 trials. To obtain
predictive saccadic movements, the visual targets were presented
at a pacing rate of 0.9Hz for all tasks (Wong and Shelhamer,
2011). In all tasks with a point target, the subjects were instructed
to make an eye movement to each target as it appeared.

In task LINE (horizontal predictive saccades to a vertical
line), we adopted the same protocol as for horizontal predictive
saccades, except that a vertical line was used as the target and
moved between locations at ±5◦ with respect to the vertical
meridian. Subjects were instructed to make saccades so as to look
at the center of the vertical line each time it appeared.

Each task included a calibration block that immediately
preceded the experimental block. Calibration recordings were
obtained for 12 target positions in the horizontal, vertical, and
oblique directions, spanning up to 5◦ in each direction. The
targets were shown for 1,000 or 1,500ms. Linear interpolation
between calibration positions was used to provide a calibration
factor for each recorded eye position.

Data Processing and Analysis
Processing of recorded data was performed off-line by a
semiautomatic algorithm. Digitized coil signals were low-pass
filtered at 100 Hz. Eye velocity was calculated using an eight-
point central-difference derivative algorithm (Inchingolo and
Spanio, 1985; Federighi et al., 2011). Saccades were identified
automatically based on a velocity threshold of 10◦/s. The same
threshold was used to detect the starting and ending times
of saccades. The automatic selection of saccades was verified
interactively.

We examined saccade accuracy for the first (primary) saccade
generated in response to each target movement. Saccade accuracy
was assessed by measuring endpoint error, defined as the angular
distance between target position in degrees (T) and position
of the eye at the conclusion of the primary saccade in degrees
(P): |P| − |T| (assuming that eye and target are on the same
side of midline so that they have the same sign). Undershoot is
defined by a negative value and overshoot by a positive value.
We determined two components of endpoint errors: along the
direction of target motion (on-axis errors), and orthogonal to the
direction of target motion (off-axis errors).

Saccadic endpoint error has variable and systematic
components. We examined the variable component of the
on-axis and off-axis endpoint errors of predictive saccades by
analyzing the correlation structures of their time series. For each
subject and condition, separate time series of on-axis and off-axis
endpoint errors were created. Since saccade accuracy may differ
for rightward vs. leftward or upward vs. downward saccades, we
examined saccades in each direction of motion separately.

We analyzed the correlation structure of each time series
composed of on-axis or off-axis endpoint errors. We looked
for long-term correlations in our time series data by two
approaches: a spectral-domain method and a time-domain
method (Rangarajan and Ding, 2000).

A wide class of stationary stochastic processes with long-
term correlations have autocorrelation functions that decay as
a power-law function of time lag: Rx(τ ) ≈ τ

−β, where 0 < β <

1. The power spectrum of this type of time series also decays
as a power-law function of frequency: Sx(f ) ≈ f−α. Here, f is
frequency and τ is a time lag that quantifies delay of the time
series x[n−τ ] relative to its original version x[n] (Papoulis, 1984;
Rangarajan and Ding, 2000). For a time series x[n], the power
spectrum is the Fourier transform of its autocorrelation function.
Thus, information on temporal correlations will be expressed
in both the time and the frequency (spectral) domains. Since
long-term correlations in the autocorrelation function are small
and noisy, and are better reflected in the low-frequency band of
the power spectrum, we assessed long-term correlations in the
spectral domain. Specifically, we measured exponent α, the slope
of a linear regression on the log-log plot of the power spectrum
determined as the squared magnitude of the Fourier transform of
the time series, to quantify long-term correlations.

Rescaled range analysis was then used to estimate self-
similarity in the time domain, by evaluating fluctuations as a
function of the duration of a time window (Bassingthwaighte
et al., 1994; Beran, 1994; Taqqu et al., 1995). The rescaled range is
the ratio of the range (span between minimum and maximum
values, R) of partial sums of a time series in different time
windows, to the standard deviation (S) within that window. For
some types of processes with long-term correlations, the rescaled
range decays as a power-law function of window duration (1T).
This power law is characterized by the Hurst exponent H: R/S ≈
1TH . We determined the Hurst exponent by linear regression on
the log-log plot of R/S vs. window duration (1T).

Finally, we checked the consistency of the results obtained
by the two methods. The Hurst exponent for a signal with true
long-term correlations is linearly related to the coefficient α of
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the power spectrum, described above. We verified the theoretical
relationship between the Hurst exponent and exponent α: H
= (1 + α)/2, in order to identify artifacts that could produce
misleading results (Rangarajan and Ding, 2000).

Algorithms for processing and analysis were developed in
Matlab (The MathWorks Inc., Natick, MA, USA). Statistical
computations were performed using SPSS software (SPSS Inc.,
Chicago, IL).

RESULTS

Variability Is Greater along the
Task-Relevant Direction
Endpoint-error time series for the point-target conditions were
initially characterized with conventional summary statistics
(Figure 1). Endpoint errors along the axis of target motion (on-
axis errors) were larger than errors orthogonal to that direction
(off-axis errors), for all conditions. On-axis errors (deg) were
−0.62 ± 0.54 for Task H, −0.48 ± 0.30 for Task V, −0.56 ± 0.31
for Task O. Off-axis errors were 0.03 ± 0.30 for Task H, −0.03 ±
0.36 for Task V, −0.08 ± 0.21 for Task O. These differences were
significant for all directions (P < 0.005). On-axis endpoint errors
exhibited hypometria in the normal range as shown by others: an
approximate 10% undershoot when target eccentricity is >10◦

(Becker and Fuchs, 1969; Henson, 1978; Kapoula and Robinson,
1986). The trend in the variable component of endpoint errors
was estimated by measuring the sample variances. Significant
differences in variances were found between on-axis and off-axis
errors for all directions (P < 0.001). The variance was greater
for on-axis errors [Task H: 1.35(0.72); Task V: 1.78(1.55); Task
O: 1.20(0.60), median and interquartile range] than for off-axis
errors [Task H: 0.07(0.04); Task V: 0.15(0.15); Task O: 0.34(0.05);
median and interquartile range].

Figure 2 shows saccade endpoints and endpoint variability.
Variability is summarized by 95% confidence ellipses centered on
the mean of the saccade endpoints. The data are from saccades
performed by a representative subject in the three predictive tasks
using point targets. The directions of the ellipse axes indicate that
endpoint variability is approximately aligned with the direction
of target movement, and the elongated shapes show that the
variability of on-axis errors is greater than that of off-axis errors.
Variability is more symmetric for oblique saccades, reflected in a
more circular ellipse in these cases.

Inter-Trial Correlations Are Weaker in the
Task-Relevant Direction
Figure 3 shows the power spectrum and autocorrelation function
of the endpoint-error time series for a representative subject. The
autocorrelation functions for on-axis endpoint-error time series
of rightward and leftward saccade sequences decay more rapidly
than for off-axis endpoint-error time series. The slow decay in
autocorrelation functions indicates that off-axis endpoint-error
time series exhibit correlations that persist longer than those for
on-axis errors.

The power spectra provide a complementary means
of visualizing these results, which better represents the
longer-duration (lower-frequency) correlations in the error

series. Data from horizontal and vertical predictive saccades
generated by this subject show approximately flat power spectra
for the on-axis direction, with values of α near zero that suggest
white-noise processes and uncorrelated trials. On the contrary,
the power spectra of off-axis endpoint-error time series show
values of α in the range 0 < α < 1, indicating that the power
spectrum decays as a power-law function of frequency. Power-
law decay indicates correlations in off-axis endpoint errors of
consecutive saccades. The pattern was similar for all subjects.
Mean values of exponent α for rightward and leftward saccades
are shown in Table 1.

Data obtained from oblique predictive saccades do not show a
consistent trend in on-axis vs. off-axis endpoint-error time series
(see Table 1).

Scaling Exponents Are Smaller along the
Task-Relevant Direction
Significant differences in scaling exponents α are found between
the two components of endpoint error (Figure 4). For predictive
saccades to horizontal targets, the exponent α of the endpoint-
error time series is significantly lower in the on-axis direction
than in the off-axis direction (0.10 ± 0.17 vs. 0.40 ± 0.19, P <

0.001). For predictive saccades to vertical targets, the exponent
of the endpoint-error time series is also significantly lower in the
on-axis direction than in the off-axis direction (0.15 ± 0.19 vs.
0.33 ± 0.21, P < 0.05). For oblique targets, however, differences
between on-axis and off-axis exponents were negligible (0.28 ±

0.22, 0.31± 0.13).
A scaling exponent of zero indicates a flat power spectrum,

representative of white noise, in which successive values are
uncorrelated. The slopes obtained from on-axis endpoint-error
time series are not significantly different from 0 (task H, P >

0.05; task V, P > 0.05), whereas the slopes obtained from off-axis
endpoint-error time series are significantly different from 0 (task
H, P < 0.001; task V, P < 0.001). On the other hand, all slopes
obtained from endpoint-error time series of saccades to oblique
targets were significantly different from 0 (task O: P < 0.05).

There were no significant age effects in the scaling exponents
from the H, V, and O data (first three columns in Table 1). This
was the case with the exponents shown in the table as well as
the paired differences between on-axis and off-axis exponents
in each case. Correlation coefficients with respect to age ranged
from−0.43 to 0.15, and all P-values were greater than 0.25.

Hurst Exponents Confirm Scaling Results
for Horizontal and Vertical Saccades
Hurst exponents, H, showed the same trend as exponents α

for each task (Table 2). In predictive saccades to horizontal and
vertical targets, H was significantly lower in the on-axis direction
than in the off-axis direction (task H: P = 0.001; task V: P
< 0.05). In predictive saccades to oblique targets, differences
in H were small and not statistically significant (Figure 5).
When we compared values of H with values obtained from the
expected relation betweenH and α, we found weak but significant
agreement in the on-axis direction (r = 0.32, P = 0.03) and
stronger agreement in the off-axis direction (r= 0.47, P= 0.001).
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FIGURE 1 | Example of an endpoint-error time series obtained from horizontal predictive saccades made by a representative subject. Data from

rightward saccades are shown. The data were fitted using the linear polynomial equation: endpoint-error = slope × saccade + const. The 95% prediction bounds are

indicated (broken curve). (A) Plot of endpoint-errors in the directions along target motion (on-axis) vs. trial number: slope = −0.002 ± 0.002 and const = −0.805 ±

0.303. (B) Plot of endpoint errors in the direction orthogonal to target motion (off-axis) vs. trial number: slope = −0.000 ± 0.000 and const = −0.186 ± 0.050.

Despite generating a large number of predictive saccades (500, in this case), subject performance appears at least weakly stationary (constant mean and, to a close

approximation, constant variance).

FIGURE 2 | Saccade endpoints of horizontal (blue), vertical (red), and

oblique (green) predictive saccades made by a representative subject

during Task H, Task V, and Task O, respectively. All saccades were toward

a point target, represented by an asterisk (*). The 95% confidence ellipses are

shown.

Line Targets Promote a Reduction in
Error-Control in Task-Irrelevant Directions
Our interpretation of inter-trial scaling is that it reflects storage
of error information between trials which aids in motor accuracy

(see Wong and Shelhamer, 2011, and Discussion). To help
refine this interpretation, we wished to provide a stimulus in
which there was little incentive to correct errors in the direction
orthogonal to target motion. This was done by using two vertical
lines as the targets for horizontal saccades. In this way, a
definite stimulus for horizontal saccade extent along the target
direction (on-axis) was provided, but the stimulus for the off-
axis component was indefinite. Scaling exponents α and H
of horizontal predictive saccades were compared between the
vertical-line and point targets for each subject.

Significant differences in α (P < 0.001) and H (P < 0.001)
were found between the on-axis and off-axis components for the
vertical line, as was the case for point targets (Figure 6). There
was a significantly lower value of α in the on-axis direction (0.18
± 0.19) than in the off-axis direction (0.64 ± 0.18). The off-
axis exponents were significantly different from 0 (P < 0.001),
whereas the on-axis exponents were not (P > 0.05), for leftward
saccades; rightward saccades showed the same trend (P= 0.022).
The exponent H was also significantly lower in the on-axis
direction (0.67 ± 0.05) than in the off-axis direction (0.79 ±

0.07). Figure 7 shows the power spectrum and autocorrelation
function of endpoint-error time series for a subject recorded
during the LINE task.

The exponents α for on-axis and off-axis directions were
compared for the two target types (vertical line and point)
for each subject (Figure 8). There was a significant difference
between the off-axis exponents (point compared to line);
exponents were smaller in the point task then the line task (paired

Frontiers in Human Neuroscience | www.frontiersin.org 5 March 2017 | Volume 11 | Article 100

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


Federighi et al. Correlations in Predictive-Saccade Endpoints

FIGURE 3 | An example of data obtained from 10◦ horizontal (rows A1–D1; A2–D2), vertical (rows A3–D3; A4–D4), and oblique (rows A5–D5; A6–D6)

predictive saccades made by a representative subject. Data from on-axis endpoint-error time series (columns A and C) are compared to data from off-axis

endpoint-error time series (columns B and D). Data from rightward (1; 3; 5) and leftward (2; 4; 6) predictive saccades are shown separately. (A,B) Plot of power

spectra of endpoint-error time series. Power spectra of data are plotted on a log-log scale. The broken line shows fit to a linear polynomial equation. Values of

exponent α are indicated for the data represented. (C,D) Plot of corresponding autocorrelation functions of endpoint-error time series. Autocorrelation functions are

plotted vs. the number of trials of relative shift between each endpoint-error time series and a copy of itself.

t-test, P < 0.05). Differences in on-axis exponents between point
and line tasks were negligible.

DISCUSSION

We find evidence for temporal correlations between successive
endpoints in sequences of predictive saccades made to two

alternating targets. More specifically, we examined these
properties in sequences of saccades made in the same direction
(e.g., right or left). Since we stimulated saccades with alternating
horizontal targets, this required the creation of separate
rightward and leftward endpoint series by extracting every other
value from the total series of right/left endpoints. We did this
because of known directional asymmetries in saccade control,
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TABLE 1 | Summary of scaling exponent α-values (mean and SD of α-values estimated for rightward and leftward saccades or upward and downward

saccades in each experiment) from endpoint-error in the directions along target motion (on-axis) and orthogonal to target motion (off-axis), for all

subjects.

Subject Task H Target: dot Task V Target: dot Task O Target: dot Task LINE Target: vertical line

α on-axis/α off-axis α on-axis/α off-axis α on-axis/α off-axis α on-axis/α off-axis

1 0.00 ± 0.13/0.26 ± 0.10* −0.01 ± 0.02/0.47 ± 0.04* 0.24 ± 0.05/0.37 ± 0.09* 0.05 ± 0.07/0.51 ± 0.06*

2 0.02 ± 0.07/0.16 ± 0.02* 0.08 ± 0.02/0.22 ± 0.06* 0.08 ± 0.02/0.33 ± 0.05* 0.25 ± 0.29/0.51 ± 0.02*

3 0.07 ± 0.07/0.55 ± 0.05* 0.43 ± 0.08/0.16 ± 0.06 0.48 ± 0.21/0.18 ± 0.21 −0.04 ± 0.02/0.72 ± 0.14*

4a 0.19 ± 0.33/0.36 ± 0.01* −0.04 ± 0.07/0.16 ± 0.27* 0.21 ± 0.00/0.39 ± 0.22* 0.14 ± 0.19/0.73 ± 0.33*

5a 0.26 ± 0.04/0.52 ± 0.11* 0.18 ± 0.17/0.21 ± 0.00* 0.02 ± 0.27/0.20 ± 0.05* 0.32 ± 0.08/0.61 ± 0.29*

6 −0.01 ± 0.12/0.42 ± 0.30* 0.30 ± 0.14/0.48 ± 0.17* 0.34 ± 0.06/0.31 ± 0.05 0.14 ± 0.09/0.55 ± 0.09*

7 0.30 ± 0.16/0.20 ± 0.01 0.09 ± 0.29/0.63 ± 0.00* 0.59 ± 0.02/0.43 ± 0.10 0.41 ± 0.18/0.86 ± 0.12*

8 −0.08 ± 0.15/0.62 ± 0.32*

9 0.16 ± 0.19/0.49 ± 0.05*

Asterisks (*) indicate values of exponent α that were greater for off-axis errors than for on-axis errors. Each value in the table is the mean of the two exponents α calculated separately

for either rightward and leftward saccades or for upward and downward saccades.
asubject who skipped a saccade to one or more target jumps.

which might confound the analyses. This process adds a separate
complication, however, in that it likely modifies the inter-trial
correlations in each resulting segregated endpoint series. This is
because consecutive endpoints in the new series are separated
by an endpoint in the opposite direction. The fact that we see
consistent trends between on-axis and off-axis correlations in our
data at all, despite this complication, speaks to the strength of
these relationships.

For horizontal and vertical saccades, inter-trial correlations
are weak or nonexistent along the direction of target motion,
and strong along the direction orthogonal to target motion.
The correlations that do exist are in the form of a power-
law: the autocorrelation decays as τ

−β, where τ is the lag
(trial index) between trials. Likewise, the power spectrum of
the endpoint series decays as a power law: f−α, easily seen in
the power spectra. This contributes to a string of findings of
power-law (fractal) correlations in sequences of trials in various
movement-control tasks (see Lowen and Teich, 2005 for a partial
review).

Curiously, oblique saccades do not exhibit this same pattern,
but instead have nearly equivalent error corrections in both the
on-axis and off-axis directions. However, oblique saccades may
be controlled differently than horizontal and vertical saccades,
as errors in both directions are task-relevant in different ways.
On-axis errors, similar to horizontal and vertical saccades, are
useful for supporting the maintenance of appropriate saccade
amplitude. However, the production of oblique saccades may
rely more heavily on off-axis errors to produce corrections
in angular direction of the saccade. Furthermore, corrections
in on-axis and off-axis directions for an oblique saccade may
be difficult to decouple. This is because saccade commands
are typically generated by relying on separate horizontal and
vertical pathways. Thus, it is difficult to identify whether an
error has occurred because of an incorrect vectorized motor
plan, or an inappropriate translation of the horizontal and
vertical components of the motor command into a movement.
Therefore, it is reasonable that on-axis inter-trial correlations

for oblique saccades are not significantly smaller than those
of off-axis correlations, and furthermore that it is difficult to
completely extract all of the available error information to resolve
oblique saccade errors. The need to coordinate two muscle
pairs for oblique saccades might also contribute to differences
in variability (and accuracy) between oblique movements and
those in cardinal directions, although this is unlikely to be
a major effect since vertical saccades are also controlled by
coordinated activity between two pairs of muscles. In addition,
movement errors (mean and variance) are not systematically or
substantially greater for oblique saccades than for horizontal or
vertical saccades. Finally, any muscle-pairing proposal is unlikely
to explain the differences in inter-trial correlations between on-
axis and off-axis directions, which is the primary outcome of this
work.

Despite the many findings on power-law behavior in
physiology, it remains an open question as to why power-law
(fractal) scaling such as we see in saccadic eye movements is so
prevalent. A prevailing hypothesis is that power-law correlations
represent an optimal balance between stability and flexibility (Bak
et al., 1988). A system that is too rigid and inflexible would
not respond to incoming information, and hence might perform
well under unchanging conditions but show no ability to adapt
to stimulus manipulations. On the other hand, a system that is
extremely flexible and adjusts immediately to each new piece
of incoming information might show a great ability to rapidly
adjust to stimulus manipulations, but risks losing performance
stability and can end up trying to (incorrectly) adapt its
behavior to environmental or measurement noise. The manner
in which prior information is used to guide this trade-off between
flexibility and stability is reflected in the correlations between
trials. The proper balance seems to be represented in many
systems by power-law correlations in trial-to-trial performance.
While it is not completely clear why power-law correlations
would confer such a characteristic, there is some evidence for
this interpretation. In our own work (Wong and Shelhamer,
2014) we found that stronger inter-trial correlations in the
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FIGURE 4 | Summary of exponent α-values of endpoint-error time series for on-axis and off-axis directions in all subjects. The plots show the exponent α

for (A1) rightward and (A2) leftward saccades to horizontal targets in Task H, (B1) upward and (B2) downward saccades to vertical targets in Task V and, (C1) toward

±45◦ and (C2) toward ±115◦ saccades to oblique targets in Task O. Exponents α of on-axis endpoint-error time series (abscissa index “1”) and off-axis

endpoint-error time series (abscissa index “2”) are shown.

amplitudes of consecutive predictive saccades (stimulated as in
the present study) are associated with more rapid adjustment
to target manipulations in a separate adaptation task. Thus,
the stronger the power law (the less like uncorrelated white
noise) in a prediction task, the more adaptable the person.

Having established that power-law correlations might confer
some performance advantage in consecutive amplitudes, the
algebraic relationship between amplitudes and endpoints might
then lead to the correlations that we see in some of our endpoint
time series.

Differences between Endpoint Error and
Amplitude Error
It is important to note that there is a difference between
correlations in sequences of parameter values that represent
performance, and correlations in sequences that represent
residuals or error. The former implies storage of performance
information needed to carry out the task, by retaining
information to improve subsequent trials. The latter implies
the existence of unused information. It is this latter type of
correlation that we examine in this study, since endpoints
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TABLE 2 | Summary of scaling Hurst (H) exponent values (mean and SD of H-values estimated for rightward and leftward saccades or upward and

downward saccades in each experiment) from endpoint error in the directions along target motion (on-axis) and orthogonal to target motion (off-axis),

for all subjects.

Subject Task H Target: dot Task V Target: dot Task O Target: dot Task LINE Target: vertical line

H on-axis/H off-axis H on-axis/H off-axis H on-axis/H off-axis H on-axis/H off-axis

1 H computed 0.66 ± 0.03/0.68 ± 0.03* 0.61 ± 0.02/0.69 ± 0.04* 0.63 ± 0.04/0.69 ± 0.01* 0.66 ± 0.00/0.71 ± 0.06*

H expected 0.50 ± 0.06/0.63 ± 0.05 0.50 ± 0.01/0.73 ± 0.02 0.62 ± 0.03/0.68 ± 0.05 0.53 ± 0.03/0.75 ± 0.03

2 H computed 0.65 ± 0.03/0.75 ± 0.03* 0.64 ± 0.01/0.70 ± 0.01* 0.59 ± 0.04/0.69 ± 0.01* 0.65 ± 0.04/0.82 ± 0.06*

H expected 0.51 ± 0.03/0.58 ± 0.01 0.54 ± 0.01/0.61 ± 0.03 0.54 ± 0.01/0.66 ± 0.03 0.62 ± 0.14/0.75 ± 0.01

3 H computed 0.62 ± 0.00/0.82 ± 0.11* 0.72 ± 0.10/0.69 ± 0.00* 0.68 ± 0.02/0.63 ± 0.01* 0.64 ± 0.04/0.75 ± 0.03*

H expected 0.54 ± 0.04/0.78 ± 0.02 0.71 ± 0.04/0.58 ± 0.03 0.74 ± 0.11/0.59 ± 0.10 0.48 ± 0.01/0.86 ± 0.07

4a H computed 0.70 ± 0.03/0.72 ± 0.01* 0.64 ± 0.02/0.67 ± 0.00* 0.80 ± 0.05/0.65 ± 0.05 0.65 ± 0.03/0.79 ± 0.08*

H expected 0.59 ± 0.16/0.68 ± 0.00 0.48 ± 0.03/0.58 ± 0.14 0.61 ± 0.00/0.69 ± 0.11 0.57 ± 0.09/0.86 ± 0.16

5a H computed 0.64 ± 0.07/0.62 ± 0.01 0.59 ± 0.01/0.63 ± 0.07* 0.65 ± 0.13/0.74 ± 0.05* 0.71 ± 0.09/0.84 ± 0.01*

H expected 0.63 ± 0.02/0.76 ± 0.06 0.59 ± 0.08/0.60 ± 0.00 0.51 ± 0.14/0.60 ± 0.03 0.66 ± 0.04/0.80 ± 0.14

6 H computed 0.59 ± 0.05/0.72 ± 0.15* 0.64 ± 0.11/0.67 ± 0.07* 0.67 ± 0.08/0.65 ± 0.08* 0.66 ± 0.05/0.78 ± 0.08*

H expected 0.50 ± 0.06/0.71 ± 0.15 0.65 ± 0.07/0.74 ± 0.08 0.67 ± 0.03/0.66 ± 0.03 0.57 ± 0.04/0.78 ± 0.05

7 H computed 0.67 ± 0.04/0.69 ± 0.02 0.70 ± 0.05/0.86 ± 0.02* 0.73 ± 0.10/0.75 ± 0.15 0.72 ± 0.04/0.87 ± 0.09*

H expected 0.65 ± 0.08/0.60 ± 0.01 0.54 ± 0.15/0.82 ± 0.00 0.79 ± 0.01/0.71 ± 0.05 0.70 ± 0.09/0.93 ± 0.06

8 H computed 0.59 ± 0.04/0.79 ± 0.03*

H expected 0.46 ± 0.08/0.81 ± 0.16

9 H computed 0.69 ± 0.04/0.76 ± 0.01*

H expected 0.58 ± 0.09/0.74 ± 0.02

Table entries are mean values of the computed exponent H, and the expected value of H obtained using the equation H = (1 + α)/2. Asterisks (*) indicate values of exponent H that

were in line with those of exponent α. Each value in the table is the mean of the two exponents α calculated separately for either rightward and leftward saccades or for upward and

downward saccades.
asubject who skipped a saccade to one or more target jumps.

are primarily a representation of movement errors. There
are differences in scaling between the on-axis and off-axis
components of saccade endpoint errors. Furthermore, these
results differ from those with saccade amplitudes, where scaling
is strong in the on-axis direction of target motion. Understanding
the essential distinction between amplitudes and endpoints sheds
light on these disparate findings.

When the oculomotor system is presented with a visual target
(or an anticipated target in the case of predictive saccades),
a saccade is programmed with appropriate metrics. It is the
amplitude of the saccade that is neurally controlled (e.g., Soetedjo
et al., 2002), with the desired amplitude derived from the
distance between the endpoint and the target. This is readily
seen in experiments where the target is moved in the course
of a saccade (a double-step stimulus, McLaughlin, 1967): before
adaptive adjustment takes place, the saccades have large endpoint
errors since they are programmed to go to the initial target
position. In contrast, it is the endpoints that provide information
on movement error (difference between desired and actual
amplitudes). There is no visual feedback of error if there is no
target to provide a basis of comparison.

Amplitudes are programmed by the oculomotor system, and
predictive saccades must be programmed in advance of actual
target occurrence. Therefore, information on the performance
of previous saccades must be stored and processed otherwise
accurate predictive saccades could not be made. Strong inter-trial
correlations in consecutive amplitudes (Wong and Shelhamer,

2011) reflect this storage. Such storage is less prevalent for
reactive saccades (Wong and Shelhamer, 2011). This is because
information about target location is reliably presented on each
trial sufficiently in advance of each saccade, instead of requiring
that the subject generate a predictive movement based entirely on
previous experience.

Inter-Trial Correlations Reflect the Use of
Error Information for Controlling Future
Movements
If greater amplitude correlations reflect better adaptation
capability, how can we explain the lack of inter-trial correlations
in the more-controlled on-axis direction for saccade endpoints?
As noted, the endpoints of primary saccades (before any
corrective saccades) reflect the actual motor-planning error in
each movement. We can think of this error series as the set
of residuals that is produced by an estimation process—one in
which the oculomotor system is constantly estimating the next
target location in order to properly program a predictive saccade
to that target. If correlations exist in the residuals, then additional
information is contained in that series, which could be extracted
and used to improve performance. Consider a simple example of
a linear regression. If there is a trend (linear relationship) that
exists in the residuals, then that regression line is not the best
that could have been produced. This is an established property
of optimal estimators in general (Kailath, 1981): residuals should
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FIGURE 5 | Summary of exponent H-values of endpoint-error time series for on-axis and off-axis directions in all subjects. The plots show the exponent

H for (A1) rightward and (A2) leftward saccades to horizontal targets in Task H, (B1) upward and (B2) downward saccades to vertical targets in Task V and, (C1)

toward ±45◦ and (C2) toward ±115◦ saccades to oblique targets in Task O. Exponents H α of on-axis endpoint-error time series (abscissa index “1”) and off-axis

endpoint-error time series (abscissa index “2”) are shown.

form a white-noise process. Hence, the absence of inter-trial
correlations in the (residual) endpoint errors suggests that
each predictive-saccade amplitude is programmed utilizing the
maximum amount of available information.

We found similar results in our previous work on adaptation
(Wong and Shelhamer, 2014). In that study, stronger correlations
between consecutive saccade amplitudes (which represent
performance, not error) were associated with better adaptation
ability in a separate task. However, the residuals (errors) of the

saccades that were made during the adaptation task showed
the opposite association: weaker correlations were associated
with better adaptation. This is because the residuals represent
movement errors, and the more information that has been
extracted from those errors, the weaker will be the correlation
between the residuals, and the better the ability to adapt.

The fact that inter-trial correlations (scaling) do exist in
the off-axis direction is equally revealing. Following similar
reasoning, the presence of these correlations indicates that
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FIGURE 6 | Summary of exponent α and exponent H-values of endpoint-error time series for on-axis and off-axis directions in all subjects. Plots show

(A) exponent α and (B) exponent H of rightward (A1, B1) and leftward (A2, B2) saccades to horizontal targets in Task LINE. Exponents α and H of on-axis

endpoint-error time series (abscissa index “1”) and off-axis endpoint-error time series (abscissa index “2”) are shown.

FIGURE 7 | An example of data obtained from 10◦ horizontal predictive saccades to a vertical line made by a representative subject. Data from on-axis

endpoint-error time series (columns A and C) are compared to data from off-axis endpoint-error time series (columns B and D). Data from rightward (1) and leftward

(2) predictive saccades are shown separately. (A,B) Plot of power spectra of endpoint-error time series. Power spectra are plotted on a log-log scale. The broken line

shows fit to a linear polynomial equation. Values of exponent α are indicated. (C,D) Plot of corresponding autocorrelation functions of endpoint-error time series.

Autocorrelation functions are plotted vs. the number of trials of relative shift between each endpoint-error time series and a copy of itself.

the estimation process is not optimal in this direction. There
is information remaining in the endpoint-error series (the
estimation residuals). This remaining information could have

been used, presumably, to improve performance in the off-axis
direction. However, since target motion is along the on-axis
direction, the oculomotor system may place less emphasis on
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FIGURE 8 | Relationships between exponent α and target (point and vertical line in Task H and Task LINE, respectively), for horizontal predictive

saccades. Plot of exponent α values of (A) endpoint-error time series for on-axis and (B) off-axis directions in relation to task. Summary of exponent α values for each

subject is shown. The box and whisker plots show exponent α of endpoint-error time series for the two targets, the point (blue) and vertical line (gray). The horizontal

bar in each box represents the median and lower and upper quartile values of exponent α. The notches represent the 95% confidence interval around the median. The

whiskers represent the distribution.

error minimization in the off-axis direction. Errors are likely to
be larger in the on-axis direction and more task-relevant, and
hence of greater consequence. This is confirmed by the findings
with a vertical-line target, where there are even stronger inter-
trial correlations in the off-axis direction. In this case even less
emphasis is placed on maintaining a consistent vertical position
of the eye, since any saccade that lands along the vertical extent of
the line is as much “on target” as any other endpoint falling along
that line.

Thus, maximal information is extracted along the direction
that is of most concern, and less so along other directions. This
has been found previously using different procedures (van Beers
et al., 2013). In that study, subjects made reaching movements
to a line, analogous to our LINE task, yielding what they
describe as task-relevant (perpendicular to the line) and task-
irrelevant (along the line) components. Movement errors in
the task-irrelevant direction had positive lag-1 autocorrelation
values, indicating at least some storage of performance from one
trial to the next. (A positive lag-1 correlation means that each
value is, on average, positively correlated with the subsequent
value—the value at a relative delay, or lag, of one time step).
In the task-relevant direction, on the other hand, the lag-1
autocorrelation was near zero, indicating uncorrelated trials, as
we find also with saccade endpoint errors. This was interpreted
as “effective trial-by-trial correction of motor planning on the
basis of observed motor errors,” which is compatible with
our interpretation of optimal estimation in generating on-
axis movements. The authors interpreted the positive off-axis
correlation as random effects of planning noise that accumulate
over successive movements. However, if random noise is simply
accumulating in the off-axis direction, it is surprising that
the observed variability magnitude remains larger in the on-
axis direction where errors are fully corrected. Thus, active
corrections are still occurring in the off-axis direction, but are

simply less rigorously maintained. By not extracting all of the
available information in the estimation process on each trial to
fully correct for each error, the remaining residuals accumulate
and hence can appear to take the form of a random walk. Thus,
our results suggest that it is not simply random noise that is
accumulated, but partially corrected errors.

Other Sources of Systematic Variability in
Saccades
Signal-dependent noise is manifest as larger variability for larger
movements (Harris and Wolpert, 1998). This is evident in the
horizontal components of the H and V conditions, where on-axis
variability is larger than off-axis variability. However, this same
characteristic is also present for oblique saccades (condition O),
in which the horizontal and vertical commands are nominally
identical (for these 45◦ saccades) and thus on-axis and off-
axis variability would be equal if due predominantly to signal-
dependent noise. In addition, signal-dependent noise would not
in itself explain the inter-trial correlation structure that we see.

Best visual acuity occurs when targets are within about half a
degree of the center of the fovea. On-axis errors in this study are
of this approximate size, while off-axis errors are much smaller.
Therefore, one might expect that on-axis errors would be more
actively controlled, given that they are flirting with the limits
of highest visual acuity. This might well explain why off-axis
errors, being within foveal range, are not as strongly controlled.
In addition, saccades systematically fall short by about 10%. This
hypometria has performance advantages (Harris and Wolpert,
2006) and thus seems to be deliberate and purposeful. This is
also consistent with the greater degree of control in the on-axis
direction. This intentional, consistent hypometria thus suggests
that the saccadic system imposes a large degree of control in the
on-axis direction.
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Study Limitations
The relatively small sample size in this study (nine subjects)
might limit the generalizability of the results. The small number
of subjects tested is due in part to the use of the scleral search
coil method to measure eye movements (see below), which can
be intimidating to naive subjects. Nevertheless, consistent results
were obtained in the primary outcome measures even with this
small population.

Another limitation is the use of the scleral search coil.
This is the method of choice when high spatial and temporal
resolution and precision are required, in horizontal and vertical
directions. However, the presence of the coil on the eye might
alter the programming of saccadic eye movements (Frens and
van der Geest, 2002). Presumably this would alter movements
equally in all directions, such that the major findings here which
relate mainly to differences between directions are still valid.
Nevertheless, this is a confound that might be addressed in
further studies.

CONCLUSION

This study provides further insight regarding how movements
are controlled by the central nervous system, and in particular
how resources are allocated to maintain appropriate control
over different aspects of movement, as needed for adequate
performance. The findings support an interpretation that

“optimal” control does not mean that all errors or variations
are minimized over all components of motion. Rather,
more care is taken in controlling movement components

that are more relevant to the task at hand, and whose
inaccuracy could be detrimental to the overall goals of the
movements.

The study also makes a contribution to the field of fractal
physiology. Findings of power-law scaling (manifest from a form
of fractal time series) continue to arise in many studies of
cognition and motor control. Our results find power-law scaling
in task-irrelevant directions for horizontal and vertical saccades.
As in so many other cases, it is not clear if this fractality is
of specific importance. What is clear, however, is that there are
differences in the correlation structure—and thus in the storage
of error information—between different components of motion.
That the stronger correlations are fractal in form matches results
from our previous studies in saccade control.
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