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Abstract

Individual differences in sensorimotor adaptability may permit customized training protocols

for optimum learning. Here, we sought to forecast individual adaptive capabilities in the ves-

tibulo-ocular reflex (VOR). Subjects performed 400 head-rotation steps (400 trials) during a

baseline test, followed by 20 min of VOR gain adaptation. All subjects exhibited mean base-

line VOR gain of approximately 1.0, variable from trial to trial, and showed desired reduc-

tions in gain following adaptation with variation in extent across individuals. The extent to

which a given subject adapted was inversely proportional to a measure of the strength and

duration of baseline inter-trial correlations (β). β is derived from the decay of the autocorrela-

tion of the sequence of VOR gains, and describes how strongly correlated are past gain val-

ues; it thus indicates how much the VOR gain on any given trial is informed by performance

on previous trials. To maximize the time that images are stabilized on the retina, the VOR

should maintain a gain close to 1.0 that is adjusted predominantly according to the most

recent error; hence, it is not surprising that individuals who exhibit smaller β (weaker inter-

trial correlations) also exhibited the best adaptation. Our finding suggests that the temporal

structure of baseline behavioral data contains important information that may aid in forecast-

ing adaptive capacities. This has significant implications for the development of personal-

ized physical therapy protocols for patients, and for other cases when it is necessary to

adjust motor programs to maintain movement accuracy in response to pathological and

environmental changes.

Introduction

Meaningful interactions with the environment require integration of sensory inputs coupled

with highly coordinated motor outputs. The inherent plasticity in the sensorimotor system

provides remarkably adaptable motor control that facilitates compensation for movement

errors that arise from both internal (e.g., pathological) and external (e.g., environmental)
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perturbations. With time, the body readily modifies behavior in response to extreme chal-

lenges, such as vestibular lesions or the changing gravity levels (g-levels) associated with space

flight, as well as sporadic demands that occur during everyday life, such as donning new read-

ing glasses or fatigue during exercise. Furthermore, even an accurate, highly functioning sen-

sorimotor system continues to actively fine-tune motor responses to optimize performance

[1]. Hence, the adaptive capabilities of the sensorimotor system enable high performance

under a wide variety of circumstances.

While healthy persons generally show favorable adaptation when presented with a miscali-

brated sensorimotor behavior, individual differences exist: some people adapt faster or more

fully than others. Similarly, vestibular patients recovering from labyrinthectomies–while

invoking a wide range of compensatory mechanisms instead of or in addition to recovery of

the VOR per se–require varying amounts of rehabilitation therapy, and some take longer to

recover than others [2, 3]. Astronauts enduring the same flight profiles respond differently to

changes in g-level, and there is great variability in symptoms and functional impairments from

one crewmember to the next [4, 5]. The ability to know a priori which vestibular patients

might benefit from which gaze-stability paradigms, for instance, would enable more effective

targeting of training and therapy and produce better outcomes. Therefore, the primary objec-

tive of this study was to search for baseline performance metrics that can be linked to adaptive

capabilities.

Three recent studies have suggested that variability in baseline performance can be related

to motor adaptation, reviewed subsequently. Variability in task performance is an inherent fea-

ture of all biological systems, manifest commonly as fluctuations in motor performance across

repetitions of a task [6]. Traditionally, this “noise” has been deemed a random process, of little

functional use [7, 8]. However, these recent investigations reveal that variability may represent

a deliberate, actively regulated process that can facilitate both flexibility and adaptability [9,

10]. Although the definitions of variability described in these studies represent different system

properties, the idea that a parameter that has been traditionally dismissed as inconvenient or

even artifactual might forecast adaptive performance is both intriguing and unexpected.

One study, by Wu and colleagues [11], examined adaptation of arm-movement trajectories

during a reaching task by means of reward-based learning. Subjects made repeated reaching

movements between two targets without (at baseline) and with (during adaptive training)

error feedback (reward). Performance was quantified by deviations between ideal and actual

movement trajectories. The authors found that individuals with larger variability (standard

deviation) in baseline performance exhibited faster learning during the training period. This

finding can be interpreted by considering variability to be an exploratory process by which

new motor patterns can be tested.

In contrast, Chaisanguanthum and colleagues [12] showed that variability in human pitch-

ing movements and monkey reaching movements can be decomposed into two parts, one that

changes slowly and one that changes more rapidly on a trial-by-trial basis. They suggested that

the dynamics of the slowly varying component are consistent with an underlying error-correc-

tion process that was identified in a prior study of reaching adaptation. In particular, these

data imply that baseline variability and adaptation both arise from processes that exhibit a

trade-off between stable (persistent) and flexible (variable) behavior to allow the system to

maintain a sufficient level of performance while simultaneously searching for better options to

avoid local minima [13, 14].

Finally, recent work in our laboratory has demonstrated a direct link between the inter-trial

correlations observed in a baseline task and adaptive capabilities in saccades [15]. Inter-trial

correlations depend on the temporal ordering of trials, and provide a measure of how strongly

the performance of trials in the past influences the planning of the current trial. This measure
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of variability is distinct from that of gross system variability (i.e., dispersion about the central

mean) as employed by Wu and colleagues. In fact, we found no relationship between gross var-

iability (standard deviation) and adaptation. Instead, individuals who exhibited stronger long-

term inter-trial correlations during our baseline saccade task adapted the fastest. This suggests

that adaptation in this case depends on the ability to retain a longer history of error-correction

information; better retention (larger correlations) leads to more stable long-term behavior,

which in turn means more sensitivity to errors and more rapid adaptive responses.

The existence of a relationship between baseline activity and adaptation performance, espe-

cially if it can be further demonstrated in other motor processes, has important ramifications

for any situation in which a treatment or intervention might be tailored to an individual’s

adaptive capability. For example, the relationship between baseline variability and adaptation

in saccades may be useful in the design of individualized rehabilitation protocols for patients

with oculomotor disorders, particularly if a similar relationship can be demonstrated in other

types of eye movements. To that end, in this current study we looked for an analogous result

in the vestibulo-ocular system. Based on our results in the saccade system, we hypothesized

that the strength of inter-trial correlations in a baseline VOR task, reflecting the use of prior

performance information to modulate current and future behavior, would also relate to adapt-

ability in the VOR.

Materials and methods

Experimental procedures

Twelve healthy individuals with no known vestibular, oculomotor, or neurological deficits vol-

unteered as test subjects; two were later excluded due to excessive blinking during baseline

tests. All subjects provided written, informed consent to a protocol approved by the Johns

Hopkins Medicine Institutional Review Board. In this experiment, subjects performed a 7-min

baseline VOR-gain test, followed by four 5-min blocks of VOR gain adaptation. During the

baseline test and between the adaptation blocks, VOR gain was measured from simultaneous

recordings of monocular, two-axis eye position (right eye, horizontal and vertical) and three-

axis (roll, pitch, and yaw) head angular velocity (EyeSeeCam video-oculography (VOG),

Munich Germany). Eye and head movement data were captured at 220 Hz and processed off-

line using algorithms described below.

The purpose of the 7-min baseline test was to provide a dataset from which fundamental

properties of the VOR could be examined for comparison with adaptation performance. This

baseline test was implemented as follows. Subjects viewed a stationary, centrally located point

target 1.5 m away in an otherwise dark room. They repeatedly moved their heads rapidly in

the yaw plane across the midline through an angle of approximately 30˚ (at approximately

300˚/s peak velocity and 5000˚/s2 peak acceleration), paced with a metronome at 60 beats per

minute for seven minutes. This resulted in approximately 420 head-steps. One baseline VOR-

gain value was derived for each head-step. Subjects were instructed to keep their eyes open for

the duration of the test and only to blink, if necessary, between head movements.

Following the baseline test, subjects performed a 20-min VOR gain-adaptation paradigm,

which consisted of four 5-min blocks of active, yaw-plane, sinusoidal head rotations while

wearing x0.5 telescopic lenses. These lenses cause images to move half as fast as usual across

the retinas during head motion, thereby requiring VOR gain to be reduced to 0.5 for proper

oculomotor compensation. During the adaptation blocks, subjects focused on a stationary,

centrally-located point target 1.5 m away and sinusoidally rotated their heads in yaw across the

midline through an angle of approximately 40˚; head movements were paced with a metro-

nome set to 90 beats per minute, and subjects were instructed to complete one half-cycle per
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beat (0.75 Hz sinusoidal motion). Adaptation was performed in the light, and subjects were

encouraged to simultaneously attend to their peripheral field of view to promote adaptation

[16]. The active, continuous nature of the head movements in the light was intended to chal-

lenge the vestibulo-ocular system to promote gain adaptation as quickly and effectively as pos-

sible. Similar gaze-stability exercises are routinely given to vestibular hypofunction patients to

facilitate compensation following unilateral or bilateral loss [17, 18]. Prior to the start of the

adaptation protocol, and after each 5-min adaptation block, VOR gain was probed in complete

darkness with a fixed, imaginary target, using 20 cycles (approximately 30 sec) of the same

sinusoidal yaw head movements as during the adaptation blocks. (VOR gain was not measured

during the adaptation blocks themselves.) The VOG system was removed before adaptation in

order to don the minifying lenses, and vice versa. The head was stationary while donning and

doffing the VOG system. However, in the course of the adaptation probes, a new method of

assessing VOR gain was investigated in parallel with the main experiment on VOR adaptation.

With the VOG system off, a set of head movements was made by the subject (25–50 head rota-

tions, approximately one minute). During these movements, the subject nulled the perceived

motion of a laser target at a distance of 1.5 m. Target motion reflected head motion, modified

by a variable gain as set by the subject. Since the target was not stationary in space but rather

was set to be perceived as stationary by the subject, this was not a de-adapting stimulus and

should have had little or no effect on VOR gain. In fact our results, showing a monotonic

decline in VOR gain across the adaptation procedure, support this contention. All subjects

performed this procedure, which we again emphasize was not a de-adapting or washout

stimulus.

Between adaptation blocks, subjects rested for 2 min with their eyes closed in complete

darkness. At the beginning of the baseline and adaptation probes, a behavioral calibration was

performed in which subjects fixated targets 8.5˚ up, down, left, and right of straight-ahead

gaze. We define adaptation extent (Δ) as the difference in VOR gain between the probe just

prior to the start of the first adaptation block and the last probe at the end of the 20-min adap-

tation period.

VOR gain calculations

VOR gain is conventionally defined as the ratio of eye velocity to head velocity at the time of

peak head velocity. However, differentiation (to obtain velocity from position) of the sinusoi-

dal eye-position data obtained during the adaptation probes produced noisy eye-velocity

traces, possibly subjecting peak detection to artifacts. Therefore, VOR gain values derived

from the adaptation probes were instead computed from ratios of peak-to-peak eye position to

peak-to-peak head position. Extraction of peak eye velocities from the 7-min baseline test,

however, was easily achieved due to the high velocity and acceleration profiles, and so baseline

VOR gain values for the head-steps were computed in the more conventional manner from

the ratios of peak eye velocity to peak head velocity. (We did not perform a direct comparison

of these two methods of finding VOR gain. Given the known relationship between position

and velocity for sinusoidal motion, we expect that they are interchangeable. The replacement

of saccades in the adaptation data was by interpolation over the removed segment, which pro-

duced a reasonable fit in position but introduced discontinuities that adversely affected the dif-

ferentiation to velocity. Nevertheless, even in the absolute worst case that the two methods

were measuring two different things, our overall results would remain valid, since we still

would have meaningful and objective measures of variability and of adaptation. It is never the

case that the adaptation measurements are mixed with the baseline measurements; only their

summary statistics are compared.)

Baseline performance predicts adaptive capability in the VOR
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Because the eye camera and the head-velocity sensor were oriented in different inertial ref-

erence frames, which were not necessarily in line with the body reference frame, principal

component analysis (PCA) was applied to both the two-axis eye and three-axis head data (Fig

1). The resulting first principal components represent the yaw-plane eye and head motion in

the body reference frame. All VOR gain computations were performed on these single-axis,

first principal components.

For both the baseline and adaptation-probe datasets, fast phases and saccades within the

eye-position data were automatically detected (and manually verified) based on a velocity

threshold and were removed, and the resulting gap was filled with a linear regression estimate

over the 25 ms before and after the fast phase. For the baseline datasets, peak eye and head

positions were identified, and one VOR gain value was computed for each head-step; head-

steps that contained blinks during peak head motion were eliminated. For the adaptation-

probe datasets, linear trends were removed from the de-saccaded eye traces since testing was

done in complete darkness to an imagined target, which occasionally allowed the subject’s per-

ception of straight-ahead to drift [19]. Head velocity was integrated to obtain head position,

Fig 1. Application of PCA to raw eye position and head velocity data of one VOR gain probe from one representative subject.

(A) raw eye data, (B) eye data transformed by PCA, (C) raw head data, (D) head data transformed by PCA. Principal components of the

eye and head data are shaded black in (B) and (D).

https://doi.org/10.1371/journal.pone.0174977.g001
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and peaks in the eye and head position traces were detected. Half-cycles containing blinks

were eliminated, and VOR gain values were computed for the remaining peak-to-peak pairs

and then averaged to obtain a single gain value for each probe (five-minute interval).

Quantifying inter-trial correlations

The relative strength of longer-term inter-trial correlations was estimated using spectral analy-

sis of the baseline VOR gain data. Trial-to-trial fluctuations can be quantified with the autocor-

relation function (ACF, denoted Rxx(τ)). The ACF describes the linear cross-correlation

between the signal and a time-shifted version of itself. For a stationary process X(t), the ACF is

defined as

RxxðtÞ ¼ E
ðXðtÞ � mÞðXðt þ tÞ � mÞ

s2

� �

where E is the expected-value operator, τ is the time shift between time series X and a copy of

itself, and μ and σ2 are respectively the (sample) mean and variance of the time series X(t). For

well-behaved processes (e.g., those for which the ACF is integrable), -1 < Rxx(τ)< 1, with 1

indicating perfect correlation and -1 indicating perfect anti-correlation. The ACF is normal-

ized such that Rxx(τ = 0) = 1 indicating that a signal is perfectly correlated with an exact (non-

time-shifted) copy of itself.

The decay of the ACF provides information regarding the strength and persistence of inter-

trial correlations: how rapidly information from past trials is “forgotten.” For a completely

uncorrelated white-noise process, Rxx(τ6¼0) = 0, meaning that there is no correlation among

trials, as expected from a process without memory. Thus, a no-memory process has no inter-

trial correlations. On the other hand, for integrated white noise, where each subsequent trial

can be thought of as the sum of all previous trials, Rxx(τ) = 1 for all τ, and the process has infi-

nite memory, with uniformly strong inter-trial correlations. Between a no-memory process

and an infinite-memory process is a continuum of different memory processes. Informally, we

can consider processes as “longer-memory” when their ACF decay gradually, as indicative of

longer-term correlations, and “shorter-memory” when their ACF decay more rapidly, as indic-

ative of shorter-term correlations.

Longer-term correlations are reflected in low-frequency activity (coordinated action over

long time spans), which is more easily seen in the frequency domain than in the long tails of

the ACF. The power spectrum (or power spectral density, denoted Sxx(f)) represents signal

power in each frequency bin. It is the Fourier transform of the ACF. Longer-memory processes

(i.e., those that exhibit stronger correlations over longer times) have ACFs that decay gradually

and power spectra that contain a larger ratio of low-frequency relative to high-frequency

power. We use the phrases “longer-term correlations” and “shorter-term correlations” to

denote datasets that exhibit relatively larger or smaller proportions of low-frequency activity,

respectively. The relative magnitude of low to high frequency power can be quantified by a line

fit to the spectrum [20], with a (negative) slope β on log-log axes. β is thus a critical measure of

the relative strength of longer-term to shorter-term inter-trial correlations, which we use ex-

tensively here. It is useful to think of β as quantifying the spectral “distance from white noise,”

meaning the presence of stronger correlations. Larger β magnitudes represent more relative

power in the lower-frequency portion of the power spectrum, and are thus indicative of stron-

ger long-term correlations. Smaller (positive) β values represent more relative power in the

higher-frequency portion of the power spectrum, and are thus indicative of stronger short-

term correlations. (Negative β values are also indicative of shorter-term inter-trial correlations.

They represent more relative power in the high-frequency portion of the power spectrum in
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comparison to a white-noise process, and are hence indicative of time series that tend to fluc-

tuate about the mean more often than by chance.)

To minimize confusion and misinterpretation of our analyses, here we reserve the word

correlation to describe inter-trial correlations. When referring to the mathematical linear rela-

tionship between two variables, we use phrases such as linear trend, relation, or association.

Below, we define our primary finding of a linear trend as the β–Δ result.

Verifying the reliability of inter-trial correlations and spectral estimates

There are several mathematical properties that a time signal must have in order to yield valid

spectral estimates. Among these is stationarity, which implies that the statistics of the underly-

ing distribution, including the mean and variance, do not change over time. Although a rigor-

ous mathematical test of stationarity was not performed it is reasonably assumed for our data:

subjects continually viewed a fixed target during the baseline head-steps, thereby centering the

VOR gain around 1.0, and the total time of the baseline test was limited to seven minutes to

minimize fatigue or boredom which might have altered the mean or variance during later

trials.

In addition to stationarity, the time series should not contain substantial temporal gaps:

large numbers of individual trials cannot be omitted as this would disrupt temporal correla-

tions. Thus it is not appropriate to eliminate trials that, for example, appear to be outliers.

Accordingly, VOR gain values for all baseline head-steps were included in the correlation anal-

ysis, with the exception of a small number of trials that contained blinks during the time of

peak-head velocity (when VOR gain was measured) because no reliable eye-movement infor-

mation was available in these cases. (Two subjects were removed for excessive blinking. The

remaining ten subjects blinked in fewer than 3.6% of baseline trials. These trials were removed

and all baseline datasets were truncated to 405 gain values.)

Finally, the time series should not contain outliers. Large-magnitude outliers represent ran-

domly distributed impulse functions in the time domain, which lead to disruptive transients in

the power spectrum that do not accurately represent the underlying data. Identification of out-

liers is described in the next section. (Outliers were not simply removed, as were blinks, due to

their larger number and possible systematic nature.)

Given these concerns about the ability to obtain meaningful spectral estimates (and hence

assessment of inter-trial correlations), we used the method of surrogate data [8, 21]. This

allowed us to generate well-behaved data sets that reflect the critical defining features of the

original data, but (by construction) are devoid of outliers and excess kurtosis. Spectra and β
values were derived from these surrogates. The surrogates used here assume that the data

can be modeled as a sequence of Gaussian random variables with the same rank order as the

original data, in which the ordering of the relative magnitudes of the values is the important

factor in determining the inter-trial temporal correlations. In other words, the rank order of

the values is retained in each data set, while the values themselves are drawn from a Gaussian

distribution.

All of the baseline datasets contained outliers, and so each subject’s baseline VOR gain val-

ues were replaced with rank-ordered Gaussian random variables (GRVs) so that the derived β
values were not disproportionately biased by these random occurrences. The rank-ordered

GRV surrogates were created in the following manner. For each subject, 405 Gaussian random

variables were generated and then rank-ordered based on the amplitude rank-order of the raw

baseline gain data. This process was repeated one hundred times to generate one hundred

rank-ordered GRV surrogate datasets per subject. Mean β values were then calculated from

these surrogates for each subject.
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Managing and assessing outliers in the baseline data

It is sometimes useful to examine the specific impact of outliers in physiological data, since they

might be valid values as opposed to simply anomalies. Thus, we needed a way to systematically

identify outliers in the baseline VOR data. Our criterion for designating outliers was those data

points that precipitated excess kurtosis in the raw baseline data. We consider excess kurtosis to

be greater than 3.0, which is the kurtosis observed in a Gaussian distribution. Outliers were

delineated as follows. The mean and kurtosis of the original set of raw baseline gain values were

computed. For all subjects, the kurtosis was larger than 3.0 due to the presence of the outliers.

The data were then sorted based on their distance from the mean, and the data point furthest

from the mean was removed. The mean and kurtosis were recomputed, and the kurtosis was

once again checked against the value of 3.0. If the kurtosis was larger than 3.0, the data point far-

thest from the new mean was removed. This was repeated until enough outliers were elimi-

nated, one at a time, to render the kurtosis less than 3.0. As a final verification, the skewness was

computed to ensure that the underlying distribution was approximately symmetric. Those data

points removed during the kurtosis-trimming procedure were designated as outliers.

There are two general theories regarding the nature of outliers. One is that they are simply

noise: extraneous events that occur sporadically with no specific purpose. The other is that

they are intentional, exploratory movements whose presence might modify subsequent behav-

ior [9, 22]. If the outliers in our baseline gain data were exploratory, then one might expect the

trial immediately following an outlier to be the most affected by that outlier. Therefore, we

tested the null hypothesis (H0) that there is no difference in VOR gain between the trial just

before and the trial just after an outlier. If our outliers were indeed exploratory, then we would

expect to see systematic performance changes in the trial immediately following the outlier,

as subjects adjusted their actions based on the outliers. However, if the outliers were simply

random noise, then we would expect no difference in the gain values before and after an

outlier occurred (i.e., no behavioral modifications as a result of the outliers). A linear random-

intercept model incorporating separate intercepts for each subject was employed to test this

hypothesis.

Results

VOR gain adaptation varied across subjects

The mean pre- and post-adaptation VOR gain values for each subject are shown in Fig 2.

Recall that adaptation extent Δ was defined as the difference between these pre-adaptation and

post-adaptation values. All subjects demonstrated significant changes in gain following the 20

min of adaptation (mean Δ ± s.d.: 0.225 ± 0.057), but the change varied across subjects. (VOR

baseline values and mean adaptation values are available; see S1 File.)

Baseline inter-trial correlations are strongly associated with adaptation

performance

VOR gain adaptation extent Δ exhibited a strong linear relationship with the β values derived

from the baseline raw VOR data (βraw) (Fig 3A, r2 = 0.84, p< 0.01). We refer to this as the β-Δ
result, and it is the main finding of our study. Specifically, the larger the β value (the stronger

the longer-term, low-frequency correlations), the weaker the adaptive capacity (the less the

VOR adaptation extent) of the individual. No relationship was found between spectral slope β
and extent of adaptation at the intermediate gain probes (5, 10, or 15 min into adaptation).

To verify that the β-Δ result is not simply due to the statistical distribution of the baseline

VOR gains but is indeed due to the temporal ordering of the values, the VOR gains were
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randomly shuffled to destroy temporal correlations. We then computed a new βraw,shuffle-Δ
result using these time-shuffled surrogates. If inter-trial correlations are a significant contribu-

tor to the original β-Δ relationship depicted in Fig 3A, then randomly scrambling the temporal

Fig 2. Pre- and post-adaptation VOR gain results.

https://doi.org/10.1371/journal.pone.0174977.g002

Fig 3. (A) Δ is strongly related to βraw derived from the raw baseline VOR gain data. (B) Δ is not related to βraw,shuffle derived from time-shuffled

surrogates of the raw baseline VOR gain data. (C) VOR adaptation extent Δ is strongly related to β. (D) Δ is not related to βshuffle, derived from

time-shuffled surrogates of the rank-ordered GRV surrogates.

https://doi.org/10.1371/journal.pone.0174977.g003
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structure should result in βraw,shuffle values close to zero (analogous to uncorrelated white

noise) and no relation between βraw,shuffle and Δ. This is in fact what happens (Fig 3B).

Baseline VOR gain data contain outliers, but this does not alter the β-Δ
relationship

All subjects demonstrated baseline VOR-gain values with means approximately equal to 1.0,

but with variability from trial to trial. Between 8 and 40 outliers (approximately 2–10% of the

total number of baseline trials) were present in our ten subjects’ baseline datasets, which is

consistent with the literature regarding repeated VOR-gain measures in healthy individuals

[23, 24].

The existence of the β-Δ relationship in the presence of VOR-gain outliers leads to the ques-

tion of whether the outliers–given their magnitudes–contribute disproportionately to the

inter-trial correlations or to the relationship between β and adaptation rate. This was tested

through a data transformation in which the outliers maintain their original temporal locations,

while the non-outliers are randomly shuffled in time. If the outliers are the predominant fac-

tor, then the overall β-Δ relationship should be maintained, even as the temporal correlations

within the majority of the data (the non-outliers) are disrupted. No such relationship was

observed when these transformed datasets were generated from either the raw data or the

rank-ordered GRV surrogates described below (r2 < 0.15, p> 0.3), and hence, it is highly

unlikely that our result is due to a dominating effect of the outliers.

Outliers are not related to systematic changes in VOR performance

We consider outliers to be anomalous values in our analyses, but it is possible that they serve a

role in exploratory behavior that might aid adaptation. To test the potential for a systematic

role in motor learning due to the outliers, a linear random-intercept model was fit to estimate

the difference in the mean pre-outlier versus post-outlier VOR gain values; the random inter-

cept was included to account for the correlation in observed gain values within a subject. The

model revealed no significant difference in pre-outlier versus post-outlier gain values (χ2(1) =

0.79, p = 0.43). It was therefore concluded that the outliers were simply random, sporadic

occurrences that did not systematically alter behavior.

Surrogate data analysis to address outliers verifies the β-Δ result

Due to the presence of outliers that might impact the spectral estimates, the raw baseline data

were replaced with rank-ordered GRV surrogates (see Methods). The raw baseline data from

one subject are displayed in Fig 4A with the outliers circled in Fig 4B. One rank-ordered GRV

surrogate for this individual is displayed in Fig 4C. Note that while the rank-ordered GRV

transformation effectively “reigns in” the outliers, their outlier “status” has not been changed:

the trials furthest from the mean in the original raw data are the same trials that are furthest

from the mean in the surrogate data (Fig 4B and 4C dashed ellipses and arrows). The ACF and

power spectrum were computed for each subject’s baseline surrogate datasets, as for the raw

values described above. A sample rank-ordered GRV surrogate dataset and its corresponding

ACF and power spectrum are displayed in Fig 5.

The relationship between VOR adaptation extent Δ and βraw described previously (β
derived from the raw baseline VOR gain data) is also present using the rank-ordered GRV sur-

rogates (Fig 3C, r2 = 0.72, p< 0.01). This verifies that statistical anomalies in the VOR data

(nonstationarity, outliers) do not have an adverse effect on the spectral estimates, and estab-

lishes that rank-ordered GRVs constitute a reasonable model for these data. It is the temporal
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ordering of the relative ranks that establishes the inter-trial correlations that are then reflected

in β.

Furthermore, no relationship exists between VOR adaptation data and βshuffle (β derived

from time-shuffled versions of the GRV surrogate data), as all βshuffle values collapse to zero

(Fig 3D, r2 = 0.00, p = 0.86).

The main finding of a relationship between β and Δ suggests that trial-to-trial fluctuations

in baseline VOR gain data may reflect the ability of the VOR to adapt to novel perturbations.

Since others have posited that simpler measures of variability may be related to adaptive capa-

bilities [11], we also examined whether standard statistical parameters of the baseline VOR-

gain data–mean, standard deviation, skewness, kurtosis–could be linked to adaptability. No

such relationship was found (Fig 6, r2 < 0.12, p> 0.32). This validates our hypothesis that it is

not variability per se, but rather fluctuations in the trial-to-trial time ordering of the successive

gain values (i.e., the temporal structure), that reflects neural processing of performance that is

related to adaptation.

Discussion

The strong β-Δ relationship that we find here suggests that the relative strength of longer-term

to shorter-term inter-trial correlations in consecutive baseline VOR gain values (i.e., the tem-

poral structure, quantified by spectral slope β) can provide a foundation for forecasting the

adaptive capacity of the VOR on an individual basis. This raises the intriguing possibility of

being able to forecast an individual’s adaptive capability in a given task, based on a (possibly

Fig 4. Baseline VOR gain data from one representative subject. (A) raw data, (B) raw data with outliers circled, (C) sample rank-ordered

GRV surrogate data. Grey dashed circles and arrows demonstrate how the rank-ordered amplitude is preserved in the surrogate.

https://doi.org/10.1371/journal.pone.0174977.g004

Fig 5. Data from one representative subject. (A) rank-ordered GRV surrogate dataset, (B) corresponding autocorrelation function, and (C)

corresponding power spectrum.

https://doi.org/10.1371/journal.pone.0174977.g005
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fractal) measure of that person’s ability to store and process information on sensorimotor

errors in a related task. Given the importance of the VOR in everyday activities, and the

emphasis placed on physical therapy and rehabilitation to recover VOR function in vestibular

patients, the ability to forecast adaptation ability could have significant and far-reaching impli-

cations. As another example, in human space flight it would be highly advantageous to know

ahead of time which crewmembers might have more difficulty adjusting to the novel g-levels

inherent to spaceflight. This type of knowledge could guide individually customized counter-

measures to maximize crew safety and mission success.

Temporal fluctuations relate to adaptive capabilities in the VOR

Trial-to-trial variations in motor performance are typically interpreted as irrelevant and both-

ersome “noise.” Our results instead suggest that such temporal fluctuations may reflect an

active, intentional mechanism that can be related to adaptive capabilities. We find that the

strength of inter-trial correlations in a sequence of VOR gain values is related to the ability to

adapt to a visual-vestibular perturbation that calls for a change in VOR gain. Subjects whose

baseline VOR-gain data exhibit relatively longer memory (i.e., power spectra with larger ratios

of lower-frequency to higher-frequency content) are those who adapt the least, while subjects

who demonstrate shorter memory (i.e., power spectra with relatively smaller ratios of lower-

frequency to higher-frequency content) adapt the most. In fact, the β values (spectral slopes)

associated with subjects who adapt most are negative, which indicates that during baseline test-

ing, VOR performance with each head movement primarily depends on what occurred only in

the most recent trial. Notably, the parameter associated with adaptation (β) depends specifi-

cally on the temporal order of the individual trials.

Fig 6. No correlation is observed between VOR adaptation extent and the mean (A), standard deviation (B), skewness (C), or kurtosis (D)

of the baseline rank-ordered GRV surrogates.

https://doi.org/10.1371/journal.pone.0174977.g006
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Here, the extent of VOR adaptation was derived from pre- and post-adaptation (after 20

min) probes of VOR gain. There was no relationship between spectral slope β and adaptation

extent derived from earlier gain probes (5, 10, or 15 min into the adaptation). This is most

likely because adaptation had not reached a stable state until 20 min, and hence the probe at 20

min is a more accurate reflection of adaptation capability across all individuals despite differ-

ences in adaptation rate. Moreover, since the VOR gain could only be assayed at a few discrete

time points during learning, fits of adaptation rate are likely to be quite noisy and therefore

may not provide a good representation of adaptation capacity, in contrast to our prior work

examining saccade adaptation [15] in which rate was a more robust measure of adaptation

capacity.

VOR baseline data do not exhibit fractal structure

Within broad constraints, if the ACF decays as a power law, then the decay of the power spec-

trum also follows a power law [25], producing a straight line on a log-log frequency plot. Such

power-law behavior is indicative of a fractal time series, in which there is (statistical) self-simi-

larity across different time (frequency) scales. Based on the results of several fractal-analysis

techniques we do not have convincing evidence that our baseline VOR data represent such a

fractal process, while our previous saccade data are fractal [26]. Nevertheless, the mathematical

tools and concepts used to assess fractal behavior, and especially the relative magnitudes of

low- and high-frequency activity (longer- and shorter-term correlations, respectively), still

provide useful insights [20].

The essential point remains, moreover, that even though the correlations might not be self-

similar (fractal), any temporal correlations introduce structure in the spectrum and distinguish

it from that of a white-noise process with a flat spectrum (slope of zero, lack of inter-trial cor-

relations). Therefore, β continues to provide an estimate of this relationship between longer-

term and shorter-term inter-trial correlations.

The VOR and saccadic systems both seek to maximize time of useful

vision

The relationship between β and adaptation capacity observed here is in direct contrast to our

previous findings in the saccadic system [15], where larger β in a baseline saccade task corre-

sponds to better adaptation ability. However, this seeming discrepancy might be resolved by

considering the ultimate goal of both oculomotor systems: to maintain stable images on the

retina using whatever adaptive adjustments are most readily available to each system. This is

particularly evident in the VOR, which works to minimize slip of images on the retina. Indeed,

the presence of rapid online corrections during active head motion in the presence of continu-

ous visual feedback suggests that this system is particularly concerned with ensuring that the

VOR gain at every instant is as accurate as possible, to avoid the need to introduce catch-up

saccades (maximizing the time that vision is available). To that end, the VOR should immedi-

ately respond to any inaccuracies in gain, resulting in a system that is highly concerned with

the most recent error and much less concerned with any errors from the past. That is, the ideal

VOR system would adapt as much as possible on every trial in response to the immediate error

experienced on that trial in order to keep the gain close to 1.0. This could be considered

within-trial learning as opposed to trial-to-trial learning. Better adaptation capability would

then be reflected in smaller β values (less storage from trial to trial) at baseline. For the same

reason (to minimize per-saccadic degradation of vision) the saccadic system exhibits the oppo-

site behavior. It is more costly to make a large saccade that overshoots the target which then

requires a backward correction, than to make a shorter saccade and a small forward correction
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[27, 28]. Hence, the saccadic system favors maintaining a stable hypometric gain despite

fluctuations from trial to trial. In order to determine the appropriate saccade gain, then, this

system should rely on performance information from a large number of trials in the past

(yielding a larger β). Because the saccadic system has so much information at its disposal, this

also could make it sensitive to large unexpected errors such as those introduced in an adapta-

tion paradigm. Therefore, we would expect (and in fact observe) that subjects with larger β val-

ues at baseline can detect and respond to errors more rapidly and display greater adaptation

capability. The same underlying goal of maximizing time of stable vision thus can account for

the opposite relationships between β and adaptation capability that we observe here and in our

previous work in saccades.

Study limitations

One limitation of this study is the use of slightly different measures for VOR baseline assess-

ment (step-like head movements) and for VOR adaptation assessment (sine-like head move-

ments). Partly this selection was made in order to obtain high-quality data in each condition

while accommodating the ease and comfort of the test subjects. Rapid impulsive head move-

ments provide a clear, strong vestibular stimulus, allowing for straightforward delineation

of individual trials and thus making gain assessment simple and reliable. Lower-frequency

sine-like movements are easier for subjects to maintain with the consistency required for an

adaptation experiment, and they reflect part of the range of natural active movements made in

normal life. The most important consideration, however, is that we desired a set of baseline

(predictor) gain values that were clearly discrete, so as to mimic the saccade data in our com-

panion experiment [15]. This yields a more meaningful measure of temporal (inter-trial) cor-

relations than would be the case if the movements were continuous and sequential trials not

clearly delineated.

Functional implications and interpretations

In light of the current VOR results and the previous work on saccade adaptation, one might

posit that an individual’s propensity to retain motor-performance information might be a

global characteristic of that individual’s sensorimotor processing (a “sensorimotor pheno-

type”). In other words, if an individual exhibits strong inter-trial correlations in one sensori-

motor system, is it the case that he or she also expresses strong inter-trial correlations in other

systems? Such a finding would mean that characterizing baseline performance in one system

would not only lead to predictions regarding adaptive capacities in that system, but also to pre-

dictions about adaptive performance in other systems. To this end, we compared the β values

and adaptation performance across six subjects who participated in both the saccade [15] and

VOR (this study) experiments. There was no systematic relationship between β and adaptation

performance across the two experiments. The β values derived from the baseline saccade data

were not the same β values derived from the baseline VOR gain data, and those subjects who

were high-performing adapters in one experiment were not necessarily low-performing adapt-

ers in the other experiment.

However, this does not rule out the possibility that β may be a global sensorimotor predic-

tor across systems that have similar requirements to store and process information on previous

performance. The parameter may have an important predictive role in posture or locomotion,

for example. Since many parameters of the locomotor system can be modified during motion

(e.g., stride length and timing), perhaps the β values derived from VOR gain data would corre-

late with some aspect of performance during walking. Future experiments are needed to assess

such cross-system possibilities. Additionally, even if measures of β do not generalize at all
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across motor systems, the ability to find a unique relationship between β and adaptation capac-

ity for any given motor system still provides important insight into the nature of what parame-

ters that system is seeking to optimize.

Accuracy of sensorimotor behaviors is consistently maintained through learning and adap-

tation. This has been convincingly demonstrated for a great many behaviors, including sac-

cades, reaching, locomotion, and vestibular reflexes. A major component of these adaptive

processes is error-based learning: the errors of previous movements are monitored and used

to alter subsequent movements in order to make them more accurate. An important feature of

these types of motor learning is that error is stored and appropriately processed. Such trial-to-

trial learning can be modeled as a Markov process when the single previous trial has the domi-

nant effect, or more generally as state-space models with various memory times. Our results

here show that these memory times and model orders are critical parameters that can connect

baseline performance and adaptive ability.
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